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The Numerical Computation
of the Confluent Hypergeometric Function U(a, b, z)

N.M. Temme
Mathematisch Centrum, Kruislaan 413, NL-1098 SJ Amsterdam, The Netherlands

Summary. An algorithm is given for the computation of the confluent hy-
pergeometric function U(a,b,z). For real values of a, b and z,z>0, AL-
GOL 60 procedures are given. The computations are based on a Miller
algorithm and on asymptotic expansions.

Subject Classifications. AMS(MOS): 65D20; CR: 5.12.

1. Introduction
1.1. Definitions and Relevant Properties

We consider the computation of the confluent hypergeometric function

Ula, b,2)=——

—zt4a-1 b—a-1 1
) e H1+1) dt. (1.1)

o 8

This representation is valid for Rea>0, Rez>0, beC. For other values of a
and z we define U(a, b, z) by analytic continuation. In general, ie., for general a
and b values, U(a,b,z) is singular at z=0. It is a many-valued function with
respect to z and we consider for |arg z| <z the principal branch, which is real
(if a and b are real) for z>0. With respect to a (or b) U(a,b,z) is an entire
function. For a=0,—1, —2,... it can be written in terms of Laguerre poly-
nomials

U(=na+1,2)=(~1)"n! L9(2). (12)

Ifb~a—1=n(n=0,1,2,...) it also reduces to an elementary function. It easily
follows from (1.1) that

Ugatnt1,9= 3 (4, (Z)z’“"‘, (1.3)
k=0

where (a),=I'(a+k)/I'(a), k=0,1,2,....
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The function Ula, b, z) is a solution of Kummer’s equation
w4+ (b—2)w —aw=0. (1.4)

A second solution is the function (also denoted by Fi(a,b,z))

s

M(a, b, z)=

n

[(@),/(b),] ="/ (L5)

0

i

which is regular for all finite z-values, although it is undefined for some pairs
(a, b).

The functions U(a,b,z) and M(a,b,z) satisfy recurrence relations with re-
spect to « and b. With respect to a we have

fo_ i +b=2a-2)f,+a(l+a=b)f,, =0 (1.6)
which is satisfied by
Ua,b,z) and M(a,b,z)/I(1 +a—D). (L.7)
With respect to b we have
(b—a—1)f,_+(1=b=2)f,+2f,, =0 (L.8)
with solutions
Ula,b,z) and TI'(b—a)/l(b)M(a,b,z). (1.9)

We use here the notation of Abramowitz and Stegun (1964, Chap. 13). More
information on Kummer's function can be found in this and in many other
references, for instance in Slater (1960).

For certain combinations of a and b the function U(a, b, z) reduces to other
special functions. We list here some examples (see Abramowitz and Stegun
(1964, p. 510) for a more extensive table).

a b z Relation Function

v+i 2v+1 2z e (22)7 K, (2) modified Bessel

-h o+ 1 bt (=1y"n! L&(2) Laguerre polynomial
1—x l—a z ¢ I(a, 2) \ .

1 1+ - 273 T, 2) ,[ incomplete gamma
-1y i 12 2= p (z) parabolic cylinder

The incomplete gamma function has a special cases the exponential integrals,
the sine 'and cosine integrals and the error functions. D,(z) is an Hermite
polynomial, D_,_(z) is a repeated integral of the error function (n=0, 1,2, ...).

1.2. Contents of the Paper

The algorithms given here can be used for complex values of a,b and z. In

order to formulate concrete stability conditions it is better to concentrate on
real a,b and z=x>0.



Confluent Hypergeometric Function U(a, b, z) 65

The algorithms are implemented in two ALGOL 60 procedures:
1. the procedure ¢4« computes the values

u,=(a), U(a+kb,x) and (a)yU'(a+K,b,x) (1.10)

foraz0, k=0,1,...,K, beR, x>0, where K is an integer >0.
2. the procedure ««#2 computes the values

U(a,b,x) and U'(a,b,x) (1.11)
for aeR, beR, x>0.

The prime denotes differentiation with respect to x. The single value
(@)x U'(a+ K, b,x) delivered by c#« is used for a backward recursion process
and it plays an important role when ¢4« calls recursively itself. Also «afz
calls c£«, and then the derivative is important too. It is possible to obtain the
derivative U'(a+ K, b, x) from the values uy,uy_,, for instance by using

xU'(a,b,x)=(a—b+x)U(a,b,x)— U(a—1,b,x).

For small values of x and/or large values of b this formula is not stable. Our
methods in ¢4« guarantee a stable computation for the derivative of U(a
+ K, b, x).

In Sect.2 we discuss recursion with respect to a. For values of x bounded
away from zero we can use a Miller algorithm. For x-values close to zero, we
use asymptotic expansions. In an earlier publication Temme (1975a) we used
analogous methods for the computation of (1.10) with a=b=1.

In Sect.3 we consider some aspects of recursion with respect to b. The
ALGOL 60 procedures are described in Sect.4. The procedures call for pro-

cedures published earlier in Temme (1975b), a publication on the computation
of modified Bessel functions.

2. Recursion with Respect to a

From (1.6) and (1.7) it follows that u, of (1.10) satisfies

(a+k—=Nu,_+Ob-2a—x-2ku,+(a+k+1-b)yu,, =0, 2.1
a second solution being
g.=[Ia+k)/I(1+a+k—b]M(a+k,b,x). (2.2)

From asymptotic expansions ‘of the gamma functions and from Slater (1960,
p. 80) it follows easily that for k— oo
w=[2/T(@)](k/x)*~ 2 2 K, [2(k x)*][1+ 0k~ )],

23
g, =T(b)(k/x)*=V12 2], [2(kx)¥]1[1+O(k~#)], 23)

where I (z) and K (z) are modified Bessel functions. For Re kx — oo we obtain
by using well known expansions for the Bessel function
w,~ [ /T(@)] (k/x)®~ 172 (k x)~ * exp[§ x —2(k x)*],

2.4
g~z I(B)(k/x)®~ D2 (k x)~* exp[§ x +2(k x)*]. 24

<—‘
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So, in the terminology of Gautschi (1967), u, is a minimal solution and g, is a
dominant solution of (2.1). Hence the computation of u,, , from u,, u,_, (using
(2.1)) is not stable. If we want to use (2.1) for the computation of {u,} we have
to use it backwards, ie. from u, u,,, we compute u,_,. Backward recursion
may be unstable for small k; see §3.2.

2.1. A Miller Algorithm for {u,}

As follows from (2.4) we can use a Miller algorithm for .the computation of
{w,}. For details of such an algorithm we refer to Gautschi (1967). As normal-
ization we use

b—a—l). (2.5)

kgomkuk':x—aa mk=(—1)k ( k

This relation is easily verified by substituting (1.10) in (2.5) and using (1.1). For
x>0, a0, beR the u, are non-negative; for b<a+1 all m, are non-negative.
Hence in these cases (it will appear that we can restrict b to [0, 1]) the series in
(2.5) has non-negative terms, which is important in the numerical procedure.
For a=0 we have uy=1, u;=u,=...=u,=0. For the Miller algorithm we
suppose 0<a <1, other positive a-values need not be considered.

The Miller algorithm for the recursion relation (2.1) is also considered by
Wimp (1974), who in fact gives two different Miller algorithms for the com-
putation of the U-function. His first algorithm is based on a third order differ-
ence scheme and gives a single value U(a,b,x). It converges faster than his
second algorithm which is similar to ours and which gives any desired number
of values u,.

Wimp did not go into the numerical details, although some important
problems may arise. For instance, we found that backward recursion by using
(2.1) may be unstable for certain combinations of the parameters, especially
when b is large with respect to a+k+x. More details on this point are dis-
cussed in §3.2.

This algorithm was also used in Temme (1975b) for the computation of the
Bessel function K, (x). For x-values satisfying 1<x <4, Campbell (1980) modi-
fied this algorithm by using the Wronskian relation for the modified Bessel
functions. His faster method applies also in the present case. For 1.4<x<6.5
we use (instead of (2.5)) the normalization

I'b)

Ula,b,x)M'(a,b,x)—U'(a,b, x) M(a, b, x)=r(a)

x~bex, (2.6)

The M-functions are computed by using (1.5); the rate of convergence of (1.5)
is the same as that of the exponential function (a=b).

In (26) U, M and M’, are positive and U’ is negative for a>0, b=0, x>0.
Therefore, (2.6) is stable for the indicated ranges of a, b and x. The Wronskian

(2.6) is also used in the case x> 6.5 and a=b. In that case the M-functions are
exponentials and (2.6) becomes

Ula,a,x)—U'(a,a,x)=x""°
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For small a and/or b the gamma functions in (2.6) are not easy to handle in
calculations. In the computer program we combine these functions with M’
and U’ in such a way that underflow or overflow will never occur when a or b
is small.

In the algorithm a different version of (2.1) is used. From (2.1) it is not clear
whether backward recursion is stable for small values of k. By introducing

ve=(a), U'(a+k,b,x) 27
(compare (1.10)) we obtain the first order (2 x 2)-system

U =Upi 1 — Uy

>
uy=[=xvp,  +atk+1+x—bu,_ JYatk <=0 (2.8)

If x>0, a>0, beR, then v, is negative. Hence, backward recursion is stable for
all kz0if a+1+x~b=0. As mentioned earlier, we take ae(0, 1], be[0,1] and
x>0. Hence (2.8) is stable for these limited ranges of a and b. Other values of
b are treated in Sect. 3.

The starting value v in the Miller algorithm is computed as in Temme
(1975b). In fact it is the method of Olver (1967). We take as starting values

a,=1, 0,=-2v/[x+(x*+4xv)].

This choice follows from approximating the differential equation for y
=U'(a,b,x)/U(a, b,x) viz. x(y' +y*)+(b—x) y—a=0, by putting y) =b=0.

2.2. Backward Recursion with Computed Starting Values

For small values of x, the Miller algorithm is not very efficient to generate u,
of (1.10). As follows from (2.4) the dominance of g, over u, becomes rather
weak if x is small. For small x we use computed starting values for the re-
cursion (2.8). These values are obtained from asymptotic expansions of
U(a, b,x) and U'(a,b,x) for large a, which are valid for small x. Such expan-
sions are given in Slater (1960, p. 80). Similar expansions are derived in Temme
(1979), where for the case of real a, b and x>0 simple bounds are given for the
remainders in the expansions. The expansions are for N=1,2,3,...

N1
Ua,b,x)= 3 ¢,(b,x),(a,b,x)+Ry(a,b,x)
n=0
N-1
U'la,b,x)= Y d,(b,x),_ (ab,x)+Ty(a,b,x)
n=20
b,(a,b,x)=2e"*/T(a)(x/a)"* ' =P K, | _,[2(a x)¥] (2.9)

n

¢ (b, x)= . bV (x) b2 (b),

j=0

d,(b,x)=Y b{I(x) b (b).
j=0
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The bY are defined by the generating functions (for |z| <)

exp[x u(t)]= .ibg})(x) o [t/(l—e"9]’= i} bg.z)(b) o

(2.10)
b (b)=(1—j/b)bP(B);  w(x)=1/r—1/(e=1D)—3.
The function K, in ¢, is the modified Bessel function. Coefficients b{"(x) and
b®(b) are for j=0,...,8 incorporated in the ALGOL 60 program (in fact
bi.z’(b)/b); see arrays £z, ££[0:8] in the block announced by “if x= 1.4 then”).
The remainders R, and Ty are bounded by simple expressions. Let

K(d,b,x)=|sind| b exp[$x(1/d+ 1/|sind|)] (2.11)
then, as proved in Temme (1979), for a>0, x>0, b=0

|Ry(a,b,x)|<d*=N K(d, b, x) ¢ n(a, b,x)

(2.12)
Ty, b,x)| <d®=¥*+1K(d,b+1,x) ppyla, b+1,%),

where d is arbitrary in [37/2,2 7).

We use the above expansions for the computation of u, and v, for a large
value of k (see (1.10) and (2.7)). We fix N; in the computer program we use N
=9. Furthermore we take 0<b<1. We have to choose k=K so large that,
given ae(0,1], be[0,1], x>0, >0, de[3 /2,2 n),

(@), IRy(a+k,b,x)|<eu, and (a),|Tyla+k,b,x) <elv,. (2.13)

The minimal value of k satisfying both inequalities of (2.13) is computed by
using inequalities for ¢;(a,b,x) as given in Temme (1979). Also the value of d is
computed according to a device given there.

When u, and v, are computed we use (2.8) for backward recursion.

2.3. Negative a-Values

The integral (1.1) defines U(a, b,z) for Rea>0. However, as follows from re-
cursion with respect to a, see (1.6), U(a,b,x) is an entire function of a and
recursion can be used for the analytic continuation of (1.1) to Rea=0. First
values for the recursion can be obtained from the algorithms of Sect.2. We
give an ALGOL 60 program «adz which computes U(a,b,x) and the x-de-
rivative for aeR, beR, x>0. Computation of (1.10) for a<0 is not attractive
due to possible singularities (for negative integer values of a) of the factor I'(a
+k)/T'(a). Special values for a= —n, n=0,1,2, ..., follow from (1.2).
For a— — o0, b bounded, x>0 we have

Ula,b,x)=TGb—a+Hn tet*x ¥ cos(y+an)[1+0(—a)~*]
M(a,b,x)=T(b)n~*e**(—ax)* =1 cos(y)[1 + O(—a)~*]
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with y=(2bx—4abx)*—1bn+in It follows that U(a,b,x) and M(a.b,x)T(1
+a—1b), the two solutions of (1.6), are not dominant with respect to each other.
Thence recursion is possible for both solutions in negative a-direction.

We use (2.8) in the form

Ula,b,x)=U'(a+1,b,x)—U(a+1,b,x)
Ula,b,x)=—U'(a+1,b,x)+(a+x+1=b) Ula+1,b,x).

It is not possible to give strict conditions for the stability as was done for a>0.

In fact U(a,b,x) and U(a+1,b,x) may have different signs when a<0. The
same remark applies for the derivatives.

When a<0 and a=b we have the incomplete gamma case, viz.
U(—a, —a,x)=¢"I(1+a,x).
In that case we can claim stability since we can recur according to the relation
e“I'(a+1,x)=ae* I'(a,x)+x°,

which is stable for increasing (positive) a. In terms of the U-functions the re-
cursion is

U(—a, —a,x)=aU(l—-a,l—a,x)+xU(l—qa,2—a,x),

in which the last term is an elementary function (see (1.3)).

3. Recursion with Respect to b

For convergence aspects of the algorithms of the previous section we restricted
b to the interval [0, 1]. Here we are concerned with the remaining b-values and
we will start with b<0. Throughout this section we suppose that a>0 and
x>0.

3.1. Negative b-Values

The crucial relation is the reflection formula
U(a,b,x)=x'"2U(l +a—b,2—b,x). (3.1)

If b is negative the b-place in the U-function on the right is positive (in fact the
reflection occurs at b=1, for convenience we use it at b=0). In order to com-

pute
u,=(a), Ula+kb,x), k=0,...,K,

(3.2)
ve=(a), U'la+K,b,x)
for b<0 we first compute
T,=(@) Ule+k1=bx), k=0...K c=l+a=b (33)

w=(c)  U'(c+K,1-b,x).
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Using (3.1) and U'(a,b,x)= —aU(a+ 1L,b+1,x), we write this as

gk=(c)kxb U(a+k+1’b+l,x)= _xb’LQk”'Uk
(a)k+1

w=—(C)gs1 U(C+K+1,2-—b,x)=—xb“l(-cﬁ(—t—luml
(a)K+1

(3.4)

where v, =u, (see (2.7)).
For computing the values in (3.3) we need an algorithm for computing {u,}
for b> 1. Details on this point will be discussed in the next subsection.
The values in (3.4) are used to compute the required u,. First uy is com-
puted by using
aU(a,b,x)=a(l+a—=b)U(a+1,b,x)=xU'(a,b, x) (3.5)

and the remaining u, (k=K —1,...,0) follow from the second of (2.8). This
recursion is stable since v, and b are negative. Also (3.5) is stable.

Remark. Instead of (3.3) we might have computed
g,=(c), Ulc+k2—b,x), k=0,...,.K, c=1+a-b,

w=()g U'lc+K,2=b,x)=—(c ko1 X2 U@+ K, b—1,x).
Then

hence u, follows rather straightforwardly form the computed @,. However, we
need also vg. This value can be computed from the uy, ug _,, or w, uy by using
one of the recursions

xU'(a,b,x)=(a—b+x) U(a,b,x)— Ula—1,b, x),
xU'(a,b;x)=(1-b) U(a,b,x)—(1+a—>b) U(a,b —1,x).

For small values of x and/or large values of —b they are not stable. In the

approach described earlier all computations are stable.

3.2. The Case b>1

Recursion with respect to b can be done by using
(b—a—1)U(a,b—1,x)+(1—=b—x)Ula,b,x)+xUla,b+1,x)=0, (3.6)

of which a second solution is [I'(b—a)/I'(b)] M(a,b,x). From the series (1.5) it

follows that M(a,b,x)=1+0(b~") for b—co, a and x bounded. From (1.1) it

follows that for b—a—~120 (by using (1+£)°~9"'>1)

U(a,b,x)>x' = I'(b—1)/I'(a). (3.7)
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Hence for the recursion (3.6) the function U(a,b,x) is dominant with respect to

the second solution. It follows that recursion in the forward b-direction is sta-
ble.

More insight is gained when we use the derivative as in (2.8). Let us write

fi=Ula,b+k x)

(3.8)

gk = U/(aa b + ka x)'

Then the recursion in the b-direction is given by
Jee1=F—8& (3.9)

xgp 1 =(k+b)g.,—af,.

Since f, >0, g,<0 (k=0), (3.9) is a recursion without subtractions (formula (3.6)
lacks this property), and hence it is stable.

Suppose we want to compute (1.10) with b>1. Then we define b, =b—[b]
and we compute the values

(@xUla+K,b,x), (a)gU'(a+K,b,,x)

by using the algorithms of Sect.2. Then we use (3.9) for obtaining u, and vy
and then (2.8) can be used for the remaining u, (k=K —1,...,0).

As mentioned earlier, (2.8) is stable if a+-k+1+x—b is not negative. Large
b values may violate this condition and in fact the second of (2.8) is not stable
for large b-values. To show this we need the asymptotic relation (compare
3.7
G Ula,b,x)~x'~2I'(b—1)/T(a), (3.10)

which is valid for x =0 (b>1) or b— o (x fixed). Inserting this in the second of
(2.8) (with modifications for v,,, and u,,,) we infer that indeed large values
will cancel each other in order to obtain a smaller value, especially when k is
small. Repeated application of (2.8) is allowed as long as k is so large that a+k
+1+x—b is not negative. If a, b and x (and K) are such that for some k this
quantity becomes negative, instabilities may arise.

It is not easy to formulate an “if and only if” condition for the stability.
The subtraction p—g of two positive numbers (g <p) is harmless if, say, g<3p.
The recursion (2.8) can be done by checking this criterion. However, in the
computer program it is convenient to have a priori information on safe k-
values. We use simply the above condition: a k-value is safe if a+k+1+x—b
is non-negative. Call m the largest value of k that makes a+k+1+x—b nega-
tive. Then

{Upy i 1o Uy 20+ Uy} (3.11)

are computed via (2.8) and for
{ug,...,u,} (3.12)

we need a different approach.
The value m is defined by

m=[b—x—1-a]; (3.13)
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if b—x—1—a=[b—x—1—a] then m:=b—x—2—a. It may happen that m<0,
In that case all u, are obtained by (2.8). If m=K none of the u, are obtained
by (2.8). In other words, the sets in (3.11) or (3.12) may be empty.

To obtain the values in (3.12) we may suppose that the values

(@);Ua+j,by,x), j=0,...,m, by=b—[b], (3.14)
are available, together with their derivatives. We can use (3.9) for recursion up
bWIth ) Ulasib,+kx),  g=(a),Ulatib, +kx). (3.15)

All these recursions are stable. However, it may be rather expensive, since
every element in (3.14) is recurred to the b-level. For an alternative method,
which may be much more efficient, we proceed as follows. We start with the
element with j=0 in (3.14) and we recur up to b—m. That is, we compute
(3.15) with j=0 for k=0, 1, ..., [b] —m, giving
f[b]—m= U(a7 b —m, X), g[b]__m_—' U/(a, b —m, X),

Next we compute

Fi=(a); Ula+j,b—m+},x), G;=);Ula+j,b—m+j,x) (3.16)
for j=1,2,...,m. (Consider the (a, b)-plane. We compute U and U’ along a diag-
onal in the (a,b)-plane.) These diagonal elements F;, G; are obtained by using

aU(a+1,b+1,x)=-=U'(a,b,x)

(3.17)
axU'(a+1,b+1,x)=—aU(a,b,x)+(b—-x)U'(a, b, x),
which in fact is Kummer’s equation (1.4). In terms of F;, G; it reads as
F. . =—G.
ak ! (3.18)

xG;, =—(a+j)F+b+j—m—x)G;

for j=0,1,...,m—1. This recursion is stable: G; 1s negaitve and (b+j—m—x) is
positive for j=0,...,m—1 (cf. (3.13)). From the diagonal a final recursion in
the b-direction is performed by using (3.9) with starting values F;, G; in order
to obtain (3.12). The procedure is illustrated in Fig. 1.

b b= a+x+1 b=a+l

Example:
K=10,a=05,b=975
Xz 4, ms= 3, b1=075
o auxiliary values
e required values

© 00 O\0 © O @

.
o
o
°
o
°
o
o
o
/oocoooooooo
77 :

Fig. 1. The values @ at the right of the line b=a+x+1 are computed via (2.8)
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In the procedure ¢%« this algorithm is controlled by the Boolean variables
r and s; r=true means that (3.11) is empty, all required values follow from
diagonal elements; s=false means that (3.12) is empty, all required values fol-
low from backward a-recursion. In ALGOL 60 notation: r:=K <m, s:i=m=0
(in c/e A is replaced by £maz).

3.3. The Polynomial Case

The actual algorithm for the case b>1 is more intricate than described above.
The point is that we take advantage of the possibility that some or all of the
desired values {u,} are elementary functions. See (1.3). In that case the time-
wasting algorithms of Sect.2 may be circumvented.

Let us introduce

c=b—a-—1 (3.19)
and we suppose here that ¢ is a non-negative integer. Then the values

{ug, uy,...,u} (3.20)
are polynomials, and the values

{Uy 1 eens lig) (3.21)

are higher transcendentals. The set in (3.21) may be empty. If it is not, its
elements are computed as in the previous subsection. Since m (see (3.13)) is not
larger than c, the set (3.21) is a subset of (3.11). Hence, the higher transcenden-
tals (3.21) can be computed by backward a-recursion, whereas some of the set
(3.20) (ie., uq,...,u,) are to be computed from diagonal elements. These diag-
onal elements are elementary functions as well. If (3.21) is empty then all {u,}
are polynomials. Then the first {ug,...,u,} are computed from elementary di-
agonal elements, the remaining with backward a-recursion with elementary
starting values.

The polynomial case is recognized in ¢4« by the Boolean variables 4 and
g p=true iff ¢ is a non-negative integer, 4 =true and ¢ =true iff all {u,} are
polynomials. That is, if K<c. In ALGOL 60 notation: j4:=c=entier(c)
Aez0, gi=0"Ze

If we combine the possible cases of §3.2 with those of the present sub-
section we obtain 8 different situations A4, B, ..., H. An illustration by means
of the (a,b)-plane is again very instructive. In Fig.2 the positions of the (a,b)
parameters of the desired elements {u,} are depicted with respect to the lines b
=a+1,b=a+x+1.

For convenience, s =true, s =false, etc. are replaced by p=1, p=0, respec-
tively. In the cases 4, B, C, D, E diagonal elements must be used (s=1). In 4,
B all elements follow from diagonal elements (r=1). In C, D, E, F, G, H (r=0)
backward a-recursion is used for some (in F, G, H for all) elements. Values of g
if p=0 are not significant; r and s are not independent: s=0 implies r=0. G
and H are treated as being the same: in G higher transcendentals are used in
the backward a-recursion and the process is not terminated at the moment
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b=a+x+! b=za+l
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Fig.2.

that elementary functions turn up. If K =0 some cases are equivalent. Then the
location with respect to the line b=a+x+1 is not relevant; the only question
is whether it is a polynomial case or not. For convenience we put r=s=1 (case
A or B) if K=0.

Examples with numerical values for the different eight cases are given in
Table 1.

Table 1. With the shown values of g, b, x, K

all cases A through H are covered a b X K ¢ m
A 2.5 8.5 1.4 2 5 3
B 2.0 8.5 1.4 2 5.5 4
C 2.0 8.5 1.4 5 5.5 4
D 2.5 8.5 1.4 4 5 3
E 2.5 8.5 1.4 6 S 3
F 2.5 8.5 6.5 2 S -2
G 2.5 8.5 6.5 6 5 -2
H 2.0 8.5 6.5 2 55 =2

4. ALGOL 60 Procedures

The procedures given here make use of external ALGOL 60 procedures for the
computation of the gamma function for positive argument and of the Bessel

function K (x), for x>0 and ve[0,2). For the Bessel function we call the pro-
cedure given in Temme (1975b).

4.1. The procedure cfeu

The heading of the procedure reads as follow:

procedure ¢4« (a,t, z, dmaz, epd, u, wptime); value w, b, z, Amaz,eps;
real o,4,z, ¢ fro, uprime; integer £maz; array «;
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ng of the formal parameters is:

rithmetic expressions);

¢ parameters of the confluent hypergeometric function U(a, b, x);
20, £eR, 2 >0.

irithmetic expression;

¢ upper bound of the array «, Amaxr=0.

rithmetic expression);

¢ desired relative accuracy; ¢ >0.

rray identifier)

ray « [0: /?"m/(.r];

it: the values of [I(a+k)/I(a)] Ula+k,b,x), 0Sk<Amax, are as-
gncd to {/[k];

dentifier) ;

it: the value of [I'(u+kmax)/I'(a)] U'(a+kmax, b, x) is assigned to

"lane.

ure ¢/ calls for the nonlocal procedures /esuda and gamma; the
jed in Temme (1975b) (£euud e also calls for other procedures). The
s not protected against underflow or overflow and does not give a
ien the parameters are out of range. This last aspect is easily in-
by the user, the first aspect strongly depends on the computing
In general the functions U(a + k, b, x) are singular at x =0:

if b< 1, the functions are bounded at x=0:
if h=1, Ula,b,x)=0(/nx)as x—=0;
ifh=1, Ula,b,x)=0(x" ") as x = 0.

arge b-valucs this singularity may cause overflow. For negative b-
‘eflection formula (3.1) is used; hence, in that event, also an over-
n may occur. For x-values bounded away from zero together with
les see (3.7), which shows that large function values arise in that

we have simply «[0]=1, «[k]=0, k=1, It follows that values of
nnot be obtained from
I'(u)

Uta t kb= "

w[k]

| [k

(except for k=0). However, by calling the procedure with a=1,
chee\l Lo ke, Jray e, wjetime), We obtain

(1+k)

o
elkl="

Ul +k,b,x), k=0,1,...,kmax,
the values of Ula, b, x) with positive integer values of a easily fol-

at « is not restricted to [0, 17.

or « are very large, underflow will occur in «[k] as can be seen
Lof(2.4)
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The (relative) accuracy can be controlled by esa. It is used to control the
truncation errors in the approximation processes. Rounding errors are not
considered. They may become important, although the recursions in ¢/« are
all strictly stable (no significant subtractions). Successive smaller choices of ¢ 4o
may yield worse results, especially if ¢z is of the same size as the machine
accuracy. The relative accuracy in the external procedures zeccp gamma and
Jind (called by £ess £2) is about 10-1%

The user may avoid a call of the Bessel function procedure dess £a (with
its external procedures vecipp gamma and sinf) by skipping the part of the
conditional statement announced by if 2 £1.4 then. In that case the procedure
will use the Miller algorithm for all x>0. This will result in a less efficient
algorithm with more rounding errors as x becomes smaller.

4.2. The Procedure walbzx

For convenience we supply a function procedure which gives directly the value
of U(a,b,x) for aeR, beR, x>0. This procedure calls for ¢4« of the previous
subsection. As a second value it delivers U'(a, b, x).

The heading of the procedure is:

real procedure wada (a,4, 2, ¢fro, wprime); value a, b, z, ¢ fi3;
real «,4, z, € jeo, wprime;

The meaning of the formal parameters is:

a,t,2: {arithmetic expressions);
the parameters of U(a,b, x) and U'(a, b, x);
2€R, £eR, =>0.
e arithmetic expression);
the desired relative accuracy; ¢sa>0.
wprime: {identifier);
exit: the value of U'(a, b, x), the x-derivative of U(q, b, x).
wabz: wabz:=U(a,b,x).

For underflow and overflow aspects and the role of « 4., see the remarks in the
description of ¢/ «.

4.3. Testing

The procedures can be compared with existing procedures for the computationn
of special cases of confluent hypergeometric functions. In this way we checked
successfully the modified Bessel functions and the incomplete gamma func-
tions. The procedure ¢/« gives as special case the computation of the repeated

integrals of the coerror function. Gautschi (1977) wrote a FORTRAN program
for computing

o0

rerfex= [ i"~'erfctdt, n=12,...

X
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with i® erfex=erfcx, i~ erfcx=(2/)/m)e~*". In terms of the U-functions we
have for x=0
Perfex=n"%2""e " Ultn+1,1, x?),

with the error function as special case for n=0.
The procedures can also be checked against themselves. The x-interval is
divided in 3 subintervals: (0, 1.4], (1.4,6.5], (6.5, oc). With

xi=14(1495), xi=65(1+9)

we computed U(a, b, x¥) and U(a, b,x7) and we compared the results with each
other. We also compared U(a,a+n+1,x) with U(a(l +38),a+n+1,x) (§ some-
what larger than the machine accuracy; the computer should recognize the
polynomial case in U(a,a+n+1,x) and the non-polynomial case in U(a(l
+9),a+n+1,x)). All tests were satisfactory. They were done on the CD CY-
BER 73 of SARA, Amsterdam (machine accuracy 2~48).

The boundary points 1.4 and 6.5 for the x-intervals were obtained by com-
paring computing time for the following choice of the parameters in « /.

@=032, £=056, ¢ps=10"1°,

In the immediate neighbourhood of x=14 the computing time was about
0.02s, at x=6.5 it was 0.03s. A call of ¢4« with large values of £ses and |b|
will require much more computing time.

Finally we give the starting index v for the Miller algorithm for «=0.5, ¢
=1, ¢ps=10""2 £maw=0 and for several values of x:

X I 141 20 65 6.6 100 50.0 100.0

v ‘ 52 40 19 38 28 12 9

4.4. Codes ()f che and walbr

procedure chu(a, b, x, kmax, eps,u, uprime); value a,b,x, kmax,eps;

real a, b, x, eps,uprime; integer kmax; array u;

comment computes gamma(a +k)/gamma(a) X u(a+k, b, x)

for k=0 (1) kmax, and the x-derivative of u(a +kmax, b, x);

if <0 or x <0 or kmax <0 or eps £0 then

begin comment here the user can incorporate an output statement
with the message “parameters out of range™;

end else

if a=0 then

begin u[0]:=1; uprime:=0;
for kmax:=kmax step —1 until 1 do u[kmax]:=0

end else

if b<0 then
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begin real c,d,e,w; integer j; array v[0: kmax];
ci=a—b+1:;d:=x}(—b); chu(c,1 —b,x,kmax, eps,v, w);
for j:=0 step 1 until kmax do
begin e:=(a+j)xd; v[j]:= —exv[j]; d:=ef(c+j) end;
uprime:=v[kmax]; u[kmax]:= —x x (uprime + e x w)/(a+ kmax);
¢c:=c+x; for ji=kmax—1 step —1 until O do
uljl:=(=xxv[j+1]+(c+j) xulj+ 1])/(a +))

end else

if b>1 then

begin real al,bl,c,d,e,f,g,h,u3,v,w; integer ij,k,m,n; boolean p,q,r,s;
procedure brec(a,b,k,f,g); value a,bk; real a,b,f,g; integer k;
begin k:=k—1; for i:=0 step 1 until kK do

begin h:=f—g; g:=((i+b)xg—ax f)/x; f:=h end

end brec;
n:=entier(b); bl:=b—n; al:=a+kmax; c:=b—a—1;
e:=¢—x; m:=entier(e); if m=e¢ then m:=m—1;
pi=c=entier(c) A ¢=0;q:=kmax=<c;r:=kmax<m;s:=mz0;

if kmax=0 then r:= s:= true;
if r then m:=kmax; k:= (if p then ¢ else n)—m;
if Tlr then

begin if p and g then
begin g:=1; i:=kmax—1; for j:=0 step 1 until i do
gi=gx(j+a); fr=gxxN—al); g:= —al x f/x;
brec(al,al +1,c—kmax, f, g)
end else )
begin chu(a,bl,x, kmax, eps,u,u3); f:=ulkmax]; g:=u3;
brec(al,bl,n, f,g); if Tlp and s then
begin for j:=kmax step —1 until 1 do
ul:=u3—ulj]; v:=uf0]; w:=u3; d:=bl
end
end; n:=m+1; ulkmax]:=f;uprime:=g; if "Is then n:=0;
for j:=kmax—1 step —1 until n do
begin h:=(—xxg+(j—e)x f)fa+)); g:=g—f; f:=uljl:=h end
end; if s then
begin if p then
begin v:=x1(—a); w:= —axv/x;d:=a+1 end else
if » then
begin chu(a,bl,x,0, eps,u,w); v:=u[0]; d:=b] end;
brec(a,d,k,v,w); e:=b—n—x;
for j:=0 step 1 until m do
begin if j=0 then
begin f:=u[0]:=v; g:=w end else
begin h:=—w; g:=w:=—((a+j— 1) xv—(j+€) x w)/x; v:=u[j]:=h
end; brec(a+j, b+j—m, m—j, ulj],g)
end; if m=kmax then uprime:=g
end
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else
:£14 then

in real d.delta,e,fp,q,r,s,1,t0,t1,u0,ul ,u2, u3, v, w,x2, y, z;
integer n,nu, k0, k1,i,j; array bb,bb1,bx[0:8], fi[ —1:8];
n:=9;
v:=12.56637; r:=(x—vx(b+1)/2; d:=(vx n+r—sqrt(r x r+4 x n x x))/(2 x n);
if d<4.7124 then
begin d:=4.7124; v:=w:=1 end else
begin v:=abs(sin(d)); w:=v}(—1—~b) end;
wi=w x exp(0.5 x x x (1/v+1/d));
delta:= eps x exp(—0.5 x x +(n—1 —b) x In(d))/w;
z:=0.5/delta; v:=05-b; i:=n—1;
for j:=1 step 1 until i do z:=zx(j+0);i:=0;
t:=sqrt(x) x zN(1/(2 x n)); e:=In(delta)+n—n x In(x);
ri=n+b+t;si=14+b+t; p:=In(r); g:=In(s);
Si=(n(t+0.5) =2 x nxIn(t)+(r—0.5)x p—(s—0.5) x g—e)/

(L[t 4+05)—2xn/t+05x(n—1)/(r xs)+p—q);
if f<O then
begin t:=t—f; t:=sqri2xx+tx1t);i:=i+1;

if i<10 then goto lub
end else kO:=1+entier(t x t/x—a);
nui= if kmax=k0 then 1+kmax else kO;
ri=a+nu; w:=sqrt(x/r); vi=2 xr x w; bess ka(—b, v, 10, t1);
vi=wl(—b); bb[0]: =bbI[0]: =bx[0]:=1;
li=fi —1]:=vx10; u0:=fi[0]:=vxwxtl; x2:=x X X;

x[1]:= —x/12;

x[2]:=x2/288;

1x[3]:= —xx(5x x2—72)/51840;

x[4]:=x2 x (5 x x2 —288)/2488320;

x[5]:= —x x (x2 x (7 x x2—1008) + 6912)/209018880;

x[67:=x2 x(x2 x (35 x x2 —10080) +279936),/75246796800;

X[T]r= —x % (%2 % (x2 X (x2 x 5—2520) + 176256) — 746496)/902961561600;
X[8]:=x2 % (x2 % (x2 X (x2 x 5—4032) + 566784) — 9953280)/86684309913600;

b[1]:=0.5;

b[2]:=(3xb—1)/24;

b[3]:=bx(b—1)/48;

b[4]:=(bx (b x (b x 15—30)+5)+2)/5760;

H[5]:=bx(bx(bx(bx3—10)+5)+2)/11520;

6]:=(bx(bx(bx(bx(bx63—315)+315)-+91)—42)—16)/2903040:

[T i=bx(bx(bx(bx(bx(bx9—63)+105)+7)—42)—16)/5806080;

[BT:i=(bx(bx(bx(bx(bx(bx(bx135-1260)+3150)—840)—2345)—
540)+404) 4+ 144)/1393459200;
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for i:=1 step 1 until n—1 do
begin
t0:=bb[i]; t1:=bbI[i]:=(b—1) x10;
for j:=1 step 1 until i—1 do
begin
t0:=t0+bb[i—j] x bx[j];
t1:=t1+bbI[i—j]xbx[j]
end;
t0:=bx[i]+b x t0; t1:=t1+bx[i];
filiYe= (e x fili =21 +(i=b) x fili— 1]/r;
u0:=u0+10x fi[i]; ul:=ul +tI x fifi—1]
end;
w:=2 x exp(x/2)/gamma(l + a);
ui=wxul: ud:=—wxul; vi=a+1—b+x; kl:=nu—1;
for j:=kI step —1 until 1 do
begin ul:=(—xxu3+(v+j)xu2)/(a+));
ud:=ud—u2;u2:=ul; if j<kmax then u[jl:=axu2;
if j=kmax then uprime:=axu3
end; u[0]:=—xxud+vxu2;
if kmax=0 then uprime:=a x (u3—u2)
end else
begin real ar,br,cr,c,er,m0,ml, mr, p0,pl,p2,q,ul,u2,u3, v, w;
integer k,n,r; boolean large x;
procedure recursion;
begin p2:=(br x pl —ar x p0)/cr; er:=er x ar/ct;
ri=r+1; if large x then mr:=mrx(1+c/r); v:=er/p2;
bri=br+2; cri=cr+1; p0:=pl; pl:=p2
end recursion;
n:=entier(a); if a=n then n:=n—1;a:=a—n; kmax:=kmax+ n;
large x:=x>6.5 A a=b;
if large x then mr:=1 else
begin mr:=0; if a=b then
begin m0:=a; ml:=1 end else
begin m0:=0; ml:=v:=1,
for r:=1,r+1 while v=ml xeps do
begin v:=vxv/r; m0:=m0+v;v:=vx(a+r)/(b+r);ml:=ml+v end;
v:=exp(—x)x gamma(a + 1)/gamma(b +1);
m0:=vx(b+axml); ml:=vxml
end
end;
ci=a~b; cri=2+¢; bri=x+a+cr; p0:=0; v:=pl:=er:=1;r:=0;
for ar:=a+r while r<kmax do recursion; w:=p0 x pl/er;
for ar:=a+r,ar+1 while vx(w/p0+mrx(2+afr))=eps do recursion;
ci=l+c;vi=x+cu2:=1; w:=0; ud:= =2 x r/(x +sqre(x x (x +4 xr)));
for r:i=r—1,r—1 while r>0 do



Confluent Hypergeometric Function U(a, b, z) 81

begin if large x then
begin w:=w+mrxu2; mr:=mrx(r+1)/(c+r) end:
ul:=(=xxud3+@+ryxu)f(a+r); ud:=u3—u2; u2:=ul;
if r=n and r<kmax then u[r—n]:=u2;
if r=kmax then uprime:=u3

end;

uli=—xxul+vxu2;ud:=ul—u2; vi=a; k:=n—1;

if kmax=0 then uprime:=u3; kmax:=kmax —n;

w:= if large x then xT(—a)/(a x (w+cxu2)+ul) else

xT(—=b)/(ul x mI —u3 x m0);
for r+=0 step 1 until k do v:=v/(a+r);
if n=0 then begin k:=1;u[0]:=wxul end else k:=0;
W:=0XW; uprime: =w X uprime;
for r:=k step 1 until kmax do u[r]:=wxul[r]
end chu;
real procedure uabx(a,b,x, eps, uprime); value a,b,x,eps;
real a,b,x, eps, uprime;
begin real al,c,p,q.r; integer j,n; array u[0:0];
n:= if a<0 then entier(a) elseO; g:=al:=a—n; u[0]:=1;
if n<0 A a=b then
begin if al>0 then chu(al,al, x,0,eps,u,q);
p:=u[0]; r:i=p—gq:
for j:=1 step 1 until —n do
begin r:=xxr; q:=(al —j)xp; p:=r—q end
end else
begin if al>0 then chu(al,b,x,0,eps,u,q);
ci=1+al—=b+x;al:=al-1; p:=ul0];
for j:=1 step 1| until —n do
begin r:=(c—j)x p—xxq; g:=(al —j)x(q—p): p:=r end:
end; uabx:=p; uprime:=q
end uabx;
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